
Technical Progress Section 2.1.2.5

2.1.2.5 Core &search

Over the past year ue have supported several core research activities aimed
at developing information resourcesI basic AI research, and tools of general
interest to the SUMEX-AIM community. Specific areas of current effort include:

1) The AI Handbook’which is a compendium of knowledge about the field of
Artificial Intelligence being compiled by students and investigators at
several research facilities across the nation. The handbook is broad in
scope B covering all of the important ideas, techniques, and systems
developed during 20 years of research in AI in a series of articles. Each
is about four pages long and is a description written for non-AI
specialists and students of AI. The AI Handbook effort is described in
more detail in Section 4.2.1 on page 130 and an outline of the current
contents of the handbook can be found in Appendix I.

21 The AGE project which is an attempt to isolate inference, control, and
representation techniques from previously developed knowledge-based
programs; reprogram them for domain independence; write a rule-based
interface that will help a user understand what the package offers and how
to use the modules; and make the package available to other members of the
AIM community. A more detailed description o’f progress on the AGE package
can be found in Section 4.2.2 on page 133.

31 The RAINSAIL project uhich is an attempt to demonstrate the design of an
ALGOL-like language system which facilitates software transportability
between different machine/operating system environments. A final report on
this effort is given below.

It should be noted that SUMEX is providing only partial support for the AI
Handbook and the AGE projects with complementary support coming from an ARPA
contract to the Heuristic Programming Project.

pAINSAI(Systenl w Software Transportability

At the end of this grant year the MAINSAIL project will have successfully
designed, demonstrated, and documented an ALGOL-like language system for machine-
independent software design. This system includes the compiler, code generators,
and run-time support for a range of target machine environments including TENEX,
TOPS-PO, TOPS-10, RT-11, RSX-11, and UNIX. The designs for other environments
have been studied but resources have not allowed more extensive implementations.
Within Council-approved funding and manpower limits and the AI charter of the
SUMEX resource* we do not have access to the more extensive resources that would
be required to continue effective development and export of this system beyond
this initial research and demonstration phase. We are hopeful that the principal
individuals involved (Messrs. Wilcox and Jirak and Ms. Dageforde) will be
successful in forming a small private company to support and continue development
of MAINSAIL uith independent funding from a growing group of potential users.
The following is a final summary on this demonstration phase of the MAINSAIL
effort. A detailed final report is in preparation.

The primary effort during the past year has been directed at making
MAINSAIL a stable, maintainable, complete system ready for distribution and

E. A. Feigenbaum 26

Section 2.1.2.5 Technical Progress

serious production programming. Implementations developed in prior years have
been improved and new ones added. The number of evaluating users has increased,
as well as the number of applications programs written in MAINSAIL. The project
is now at the point where new implementations can be undertaken, and the
groundwork for portability which has been laid over the previous years can now
begin to really show its strength.

The compiler has undergone major examination, improvement, and reduction in
size of data structures, and as a result is now able to run on machines with
small address spaces (e.g., 32K words).

The language itself has remained stable. The runtime system has not
undergone any major modifications since September.

Distribution of MAINSAIL beyond its initial test sites has begun. Due to
the increasing size of the MAINSAIL user community the need for user support has
also increased significantly. As,part of our effort to evaluate MAINSAIL’s
effectiveness in actual applications we have provided user consultation within
available resources but we have been limited in the amount of help we could
actually provide while continuing active development efforts.

A research project based on MAINSAIL is underway, aimed at providing an
efficient program execution and development environment on a high-level language
“MAINSAIL machine” which directly executes a tailor-made MAINSAIL instruction
set.

a) Implementations

The PDP-10 TENEX version of MAINSAIL has now been in use for about three
years at two local sites. A version for a somewhat non-standard TOPS-10 has been
used locally to a lesser extent for two years. Standard TOPS-10 was implemented
about a year and a half ago and received a moderate amount of use at a remote
site. This year standard TOPS-10 was sent to four new sites, including the NIH
OCRT Computer Facility.

A TOPS-20 implementation was derived from the TENEX implementation during
the past year. The TOPS-20 version is not yet complete in that it is simply a
TENEX implementation with a few minor modifications. Utilization of features of
the KL-processor instruction set and proper handling of structures in file names
have not yet been implemented, but are relatively straightforward additions.
This version of the TOPS-20 implementation is now undergoing evaluation at a
number of sites, and is beginning to be the most requested version of MAINSAIL.

Due to the interest in using MAINSAIL on machines with small address
spacesI substantial development work was done during this past year on POP-11
implementations.

On many minicomputer configurations the limited address space can have an
adverse effect on the performance of large programs. Whenever a working set of
modules cannot be contained in primary memory the system begins to exhibit the
classic thrashing condition. Since modules are normally swapped from disk the
attendant I/O overhead seriously degrades the program’s performance.

27 E. A. Feigenbaum

Technical Progress Section 2.1.2.5

Some minicomputers have additional memory which is not directly
addressable. Typically, this memory can be accessed only by changing a hardware
relocation device. A portable caching algorithm has been developed to allow
MAINSAIL to take advantage of such memory to reduce the effects of thrashing.
The additional memory is used in a two-tier storage hierarchy with the disk.
Since access to the additional memory is much faster than access to the disk,
swapping from the additional memory takes less time than swapping from the disk.
MAINSAIL modules are maintained in the memory cache in a most-recently-used
fashion. When the cache fills up, the least recently used module is bumped from
the memory cache. The modular design of MAINSAIL made this caching approach
quite natural, and holds much promise for further utilization of memory
hierarchies.

A PDP-11140 running the RT-11 operating system has been running MAINSAIL
programs for two years. The RSX-1lM operating-system interface is complete. A
POP-11134 running RSX-1lM was used as our main testing site during the
development of the compiler running ,in a small address space.

The operating-system interface for UNIX is also complete. A few MAINSAIL
utility programs have been run on a POP-11134 using UNIX and there are no
outstanding problems. This implementation requires further testing.

The runtime system has been run on a standard POP-11103 with DEC floppy
disks. This was purely a demonstration effort for two main reasons: 11 the
floppies are extremely slow, and 21 their storage capacity is insufficient for
holding anything other than simple programs, since most of the storage is taken
up by the operating system, its utilities, and the MAINSAIL runtimes.

The runtime system and the compiler have been used on a number of LSI-11
configurations. These configurations had either dual density non-DEC floppy
disks or an RK equivalent hard disk pack. Some of these machines had an
additional 32K words of video memory which MAINSAIL utilized as a module cache.
Prior to the demonstration of the compiler under RSX-llll, the fastest POP-11
compilation on record occurred on an LSI-11 with video memory and an RK type
disk.

The operating system interfaces, once written, have caused few problems.
There have been two major sources of difficulty in implementing for the PDP-11:

1) The porting of data between machines is often difficult. We are hampered
by the availability of compatible peripherals. For instance, our primary
RT-11 development machine has no magnetic tape nor floppy disks. It can
communicate with other POP-11’s only by exchanging RK-type disk packs or
with SUMEX over a 2400 baud terminal line.

2) POP-11 code generation is non-trivial, and a number of bugs were
discovered. This can be contrasted with the POP-10 code generators, which
have caused almost no problems because of the richness of the POP-10
instruction set, and the ample word size.

The POP-11 code generation problems have been decreasing in frequency. The
demonstration of the compiler on the PDP-11 has increased confidence in the code
generators though floating point code generation is only now beginning to undergo
extensive testing.

E. A. Feigenbaum 28

Section 2.1.2.5 Technical Progress

The problems of data exchange have proven substantial. It is difficult to
formulate a general strategy due to the diverse file systems which are
encountered. These problems are often underestimated, resulting in unexpected
delays in the development of portable systems.

A number of groups are interested in the development of other MAINSAIL
implementations, including ones for the VAX, ECLIPSE and TI-990 computers. We
hope to start work on these implementations this summer through the private
company being formed.

b1 Distribution and Use

The distribution beyond Stanford of PDP-10 versions of MAINSAIL was begun
this year. MAINSAIL has been implemented at sites on the Arpanet, and ported via
magnetic tape to other locations. All sites have been able to run MAINSAIL as
soon as the files are taken off the tape. This is in contrast to the typical
hardware manufacturer’s software, which often takes days, or even weeks, to make
executable.

There are currently three sites using the TENEX version, six using the
TOPS-10 version, and five using the TOPS-20 version.

Extensive work was done this year on various POP-11 configurations, and it
is now beginning to be exported beyond the test sites here at Stanford.

One user has been writing MAINSAIL programs for two years and running them
on his POP-11140. These include a 3-dimensional graphics package, a code
optimizer for the DEC VT-11 display processor, a flow rate monitor for a cell-
sorter connected to the PDP-11, and machine-independent arbitrary-precision
arithmetic routines.

A geophysics group is writing MAINSAIL programs to extract data from ERTS
tapes and to then perform a variety of image analyses on the extracted data.
Another user is writing a machine-independent interprocessor communications
facility.

A sampling of other MAINSAIL programs developed during the past year
include a machine-independent tape transfer program; a program which compares two
text files and prints out the differences on a per-line basis; a program which
forms a new text file from selected pages of existing text files; a “conference”
program enabling more than two people at once to carry out an on-line discussion;
a “calculator” program; a record i/o package, which, given a pointer to a record,
will print out the values of the fields of the record. Work has also begun on a
portable text editor.

A number of sites are now evaluating MAINSAIL with the intent of using it
for substantial product development. In most cases, the sites are primarily
attracted by MAINSAIL’s portability, since there has been no other language which
previously played this role while at the same time providing a rich programming
environment.

29 E. A. Feigenbaum

Technical Progress Section 2.1.2.5

c) Compiler Oesinn

A detailed analysis was made of the compiler, its algorithms and use of
data structures. The goal was to reduce the size and number of data structures
to allow the compiler to fit on machines with small address spaces, without
sacrificing too much efficiency.

Once the compiler was able to fit, the next goal was to improve efficiency
and reduce compilation time. First, an analysis of the compiler and of the
runtime system uncovered some inefficiencies which were corrected.

Next, various compiler configurations were examined. By configuration is
meant the various ways in which procedures can be combined into modules. On a
machine with a large address space the compiler is most efficient if it consists
of a few modules, since that reduces the number of intermodule calls. But on a
machine with a small address space, module swapping is necessary, and compilation
time is roughly proportional to the number of swaps. We wanted to determine
whether a “better” configuration (one which required less swapping) than that of
the existing compiler could be found.

A MAINSAIL program was written to simulate compilation on machines with
various address spaces. The simulation was driven by exact data, obtained from
traces of all procedure calls made during given compilations. A format was
devised for easily specifying potential compiler configurations, and the
simulator tested their efficiency. The resulting data showed that curves
plotting amount of memory versus number of swaps are smoothly exponential.
Examination of this data indicates that for 32K machines, another 10K would cut
the number of module swaps in half, thus greatly increasing compilation speed.

As a result, two configurations are now in use: a “big” configuration to be
run on machines with “large” address spaces, and a “small” configuration to be
run on those with small address spaces. As predicted by the simulation, use of
the “optimal ” small configuration significantly increased the compilation speed
on the POP-11. Use of the “big” configuration, with just a few large modules,
also improved the compiler speed on the POP-IO.

A new approach to code generation has been introduced over the past year.
It utilizes tree structures for the intermediate representation, rather than the
more primitive triples or quadruples. A tree structure is built for each
procedure, and code is generated by walking the tree. This new approach will
probably be used in all future code generators since it allows for procedure-wide
optimization, and also supports the debugging version described later.

d) Lanquaoe Oesiqn

The language itself has been very stable this past year, undergoing only a
few simple additions. The fact that it has remained stable while supporting the
past year of development is convincing evidence that the language has matured to
the point of commercial viability.

The ability to access certain fields of the array descriptor for an array
was added. These fields tell the name and bounds of the array. Similarly, the
name of a file can be accessed via a pointer to the file descriptor.

E. A. Feigenbaum 30

Section 2.1.2.5 Technical Progress

MAINSAIL originally guaranteed ASCII character codes. Last year, for
portability reasons, it was decided that MAINSAIL would no longer specify the
exact character set used, but only that minimal assumptions would be made about
the character set. A number of system procedures were added to complement the
guaranteed character set assumptions.

e) Runtime Desicin

At the time of the last annual report, a new runtime system, oriented
toward execution efficiency and less memory utilization, was under
implementation. It has been very stable since its completion in September 1978.

Some examples of further improvements are: 1) the ability to have a map of
memory printed, showing the number of pages used for control space, data space?
and buffers, 2) tuning to the garbage collection facility, and 31 a new response
that can be made to an error message bill cause the printing of a table listing
the procedure calls that led up to the call to the error message routine.

The concept of a “module library” has also been introduced. The output of
each compilation (after assembly) is an executable file. When a program consists
of a large number of modules, it quickly becomes inconvenient (if not impossible)
to have a separate file for each executable module. “Module 1 ibraries”, bulk
repositories for modules, were designed to solve this problem. A utility module
was written to provide the necessary management functions, as were procedures to
insert and delete library files from a runtime list of libraries maintained by
the MAINSAIL system. The MAINSAIL runtimes themselves, along with the compiler
modules, now reside in module libraries.

f) Emulation Research

MAINSAIL is being used as the basis of research into a language-oriented
approach to program representation and execution. Such an approach starts with
language characteristics, which determine program representation (instruction
set) and execution environment, which in turn determine the processor
architecture. This is in contrast to the conventional machine-oriented approach
in which the instruction set and processor architecture exist independently of
the 1 anguage, and hence dictate the representation and limit the execution
environment. As technology provides increasing flexibility in machine design,
high-level-language processors provide an alternative to general-purpose machine-
language processors.

The MAINSAIL compiler, with its retargetable code generators and large body
of machine-independent software, is an ideal basis for this study. A
comprehensive study is being made of the static and dynamic characteristics of
MAINSAIL programs. Based on this study, a number of language representations are
obtained by varying two primary design criteria: the nature of an operand and the
encoding of the instruction stream. The resulting representations range from a
stream of bit-aligned fields which directly reflect the source language
structure, to a sequence of simple instructions with highly-constrained operands.

Code generators, as well as instruction-set interpreters, have been
developed for a number of such representations. Machine architectures which
provide efficient implementations for these representations are also under

31 E. A. Feigenbaum

Technical Progress Section 2.1.2.5

exploration. The goal is to provide an extremely efficient MAINSAIL processor
from the standpoint of program execution time as well as program development
time. Such a processor should be viewed as a “language processor” rather than a
general-purpose processor since it is designed explicitly for the purpose of
executing a single high-level language. A language processor can be used either
as a stand-alone system which serves a single user, or as a component in a larger
system consisting of many language processors (which need not all support the
same language) that are assigned to appropriate user programs under control of an
executive processor.

A MAINSAIL debugger based on this research is operational, though it has
not been released for general use. This debugger involves an interpreter for a
MAINSAIL instruction set (called “s-code”, for structured code) which so closely
captures the structure of MAINSAIL that it can be ‘*decompiled** into what is
essentially the source text, including the original variable names. The code
generator for s-code utilizes the new tree-structured intermediate code, which is
unbiased with regard to the form of the target code. The mode of operation on a
conventional computer involves compilation of those modules which are to be
debugged into s-code. These s-code modules may be freely mixed with native code
modules (e.g., modules compiled into the POP-10 instruction set). During
execution, MAINSAIL automatically determines when an s-code module is to gain
control, and at that point gives control to the interpreter.

The interpreter allows execution to progress in a manner which directly
reflects the source program. The user can single step and place break points on
the source-statement level, display and alter the values of variables, and
display the decompiled text being executed. A screen-oriented debugger would
involve the cursor moving along the displayed text as it was being executed in
single-step mode, with the user moving the cursor to points at which break points
are to be displayed, or under variables whose values are to be displayed. The
current debugger has been designed to support such an approach, but does not yet
support this mode of operation.

Program execution can be made to halt based on a variety of conditions such
as entry to a particular module or procedure; execution of a particular
statement; or upon execution of a specified number of statements since the start
of the program. This latter type of break point allows the user to restart a
program which encountered an error, and have it break a specified number of
statement executions before the error. Single step operation then allows
examination of the execution environment on a statement-by-statement basis up to
the point of the error. Whenever the s-code interpreter detects an error (e.g.,
subscript out of range), it gives control to the debugger, which informs the user
what module, procedure and statement caused the error, and displays decompiled
text around the statement. The user can then use the full power of the debugger
to determine the source of the error.

The entire runtime system and compiler can now be interpreted in this
fashion. The “MAINSAIL machine” being designed as part of the research will
directly execute the s-code representation, i.e., s-code is the (macro)
instruction set of the machine. Due to the compactness of s-code (approximately
one-third the size of equivalent POP-10 code), and its transparency with respect
to the MAINSAIL execution environment, the MAINSAIL machine will provide
optimized program execution along with the debugging capabilities. Since s-code

E. A. Feigenbaum 32

Section 2.1.2.5 Technical Progress

is the instruction set of the MAINSAIL machine, all modules can be decompiled and
debugged with no penalty in execution speed.

2.1.2.6 User Software and Intra-Community Communication

We have continued to assemble and maintain a broad range of utilities and
user support software. These include operational aids, statistics packages, DEC-
supplied programs. improvements to the TOPS-10 emulator, text editors, text
search programs, file space management programs, graphics support, a batch
program execution monitor, text formatting and justification assistance, and
magnetic tape conversion aids. Over the past year we have undertaken several
significant development efforts to provide needed new programs to the SUMEX-AIM
community. These include:

1) TTYFTP - A number of users have had the need to move files between their
local machines and SUMEX but were not connected to the ARPANET. These
include for example the transfer of data between the PUFF project at
Pacific Medical Center in San Francisco and SUMEX, distribution of MAINSAIL
to various non-network sites, and movement of instrument data in support of
the DENDRAL or Ultrasound Imaging (Ob-Gyn) projects. We have undertaken
development of a file transfer program usable over any teletype line
(hardline, dial-up, TYMNET, etc.) which incorporates appropriate control
protocols and error checking. The design is based on the OIALNET protocols
designed by Crispin at the Stanford AI Laboratory. Differences from
DIALNET were necessary to achieve machine and data source independence. We
also expanded the OIALNET packet opcodes to include a new packet (RCT)
which prevents data overruns and augmented the DIALNET “request for
connection*’ packet to contain additional needed parameters. TTYFTP is
written in MAINSAIL so that we can take advantage of the machine
independence inherent in the language. The program is written modularly,
and has a scheduler module which can service up to eight FTP modules per
1 ine, one packet processor per line, and multiple lines. Because of this
it can run as a either user process, or a server process. The latter can
be either a listening server (handling in-coming lines) or a host server,
started up by a user program and then logged off after all transfers are
complete. We have preserved OIALNET compatibility so that we will be able
to communicate to machines running OIALNET. After the TENEX implementation
is completed, we will make the changes necessary to connect TENEX to a PDP-
11 RT-11 system and follow that with an RSX-llll version. Since MAINSAIL is
up and running under all three of these opei*ating systems, this process is
greatly simplified.

2) EMACS - We have continued to import and support the EMACS text editing
system from NIT. This editor offers a broader range of services than
TVEDIT but has lacked a smoothly human engineered interface. Substantial
effort has gone into developing macro packages that improve the human
engineering features of EMACS and providing introductory documentation for
new users. This has been closely coordinated with similar efforts at SRI
and MIT. A community of EMACS users is now developing at SUMEX.

33 E. A. Feigenbaum

Technical Progress Section 2.1.2.6

3) ARCHED - In order to facilitate management of file archive directories, we
have been developing a display-oriented editor to give improved interaction
when posting retrieval requests and to allow records of previously archived
files to have descriptive comments attached, be expunged (because they are
outdated), or be moved into secondary archive directories. Facilities will
exist to allow viewing files based on name template specifications or date
constraints.

We have also made changes and updates to many of the existing programs.
While many of these changes were maintenance bug fixes, major efforts were
involved to bring up new versions of PASCAL, SAIL BACKUP, MACRO, LIHKIO, GLOB,
PA1050, and a new set of utility routines used by many of the DEC CUSP’s.
Improvements were made in PUB (a text formatting program), MSG (a message reading
program written by J. Vittal), and BBD (the bulletin board reading program
developed at SUMEX). Several other new programs are in various stages of being
brought up on the system including Knuth’s text publication system, TEX; a
program to periodically update a news summary file from the AP news service files
kept at the Stanford AI Laboratory, APNEWS; a program to connect to the Stanford
Center for Information Processing machines, GOTRAN; an improved program to locate
users on the SUPlEX system and on other ARPANET sites, FIND; and an improved mail
facility for GUESTS.

2.1.2.7 Documentation and Education

We have spent considerable effort to develop, maintain, and facilitate
access to our documentation so as to accurately reflect available software. The
HELP and Bulletin Board subsystems have been important in this effort. As
subsystems are updated, we generally publish a bulletin or small document
describing the changes. As more and more changes occur, it becomes harder and
harder for users to track down all of the change pointers. We are in the process
of reviewing the existing documentation system again for compatibility with the
programs now on line and to integrate changes into the main documents. This will
also be done with a view toward developing better tools for maintaining up-to-
date documentation.

2.1.2.8 Software Compatibility and Sharinq

At SUMEX-AIM we firmly believe in importing rather than reinventing
software where possible. As noted above, a number of the packages we have
brought up are from outside groups. Many avenues exist for sharing between the
system staff, various user projects, other facilities, and vendors. The advent
of fast and convenient communication facilities coupling communities of computer
facilities has made possible effective intergroup cooperation and decentralized
maintenance of software packages. The TENEX sites on the ARPANET have been a
good model for this kind of exchange based on a functional division of labor and
expertise. The other major advantage is that as a by-product of the constant
communication about particular software, personal connections between staff
members of the various sites develop. These connections serve to pass general
information about software tools and to encourage the exchange of ideas among the
sites. Certain common problems are now regularly discussed on a multi-site
level. We continue to draw significant amounts of system software from other

E. A. Feigenbaum 34

Section 2.1.2.8 Technical Progress

ARPANET sites, reciprocating with our own local developments. Interactions have
included mutual backup support, experience with various hardware configurations,
experience with new types of computers and operating systems, designs for local
networks, operating system enhancements, utility or language software, and user
project collaborations. We have been able to import many new pieces of software
and improvements to existing ones in this way. Examples of imported software
include the message manipulation program MSG, TENEX SAIL, PASCAL, TENEX SOS,
INTERLISP, the RECORD program, ARPANET host tables, and many others.
Reciprocally, we have exported our contributions such as the crash analysis
program, drum page migration system, KI-10 page table efficiency improvements,
GTJFN enhancements, PUB macro files, the bulletin board system, MAINSAIL, SPELL,
SNDMSG enhancements, our BATCH monitor, and improved SA-10 software.

We have also assisted groups that have interacted with SUMEX user projects
get access to software available in our community. For example, Prof. Dreiding's
group in Switzerland became interested in some of the system software available
here after attending the DENDRAL CONGEN workshops (see Section 4.2.3 on page
139). We have provided him with the non-licensed programs requested.

35 E. A. Feigenbaum

Resource Management Section 2.1.3

2.1.3 Resource Manaqement

2.1.3.1 Orqanization

The SUMEX-AIM resource is administered between the Departments of Genetics
and Computer Science of Stanford University. Its mission, locally and
nationally, entails both the recruitment of appropriate research projects
interested in medical AI applications and the catalysis of interactions among
these groups and the broader medical community. User projects are separately
funded and autonomous in their management. They are selected for access to SUMEX
on the basis of their scientific and medical merits as well as their commitment
to the community goals of SUMEX. Currently active projects span a broad range of
application areas such as clinical diagnostic consultation, molecular
biochemistry, belief systems modeling, mental function modeling, and instrument
data interpretation (descriptions of the individual collaborative projects are in
Section 4 beginning on page 64).

At the end of the last grant year, Professor Lederberg assumed his new role
as president of Rockefeller University and Professor Feigenbaum, chairman of the
Stanford Department of Computer Science, took over as principal investigator of
the SUMEX project. This management transition took place without missing a beat
and the SUMEX-AIM community continues to function with the same high level of
vitality as before. This is due, in large part, to the depth of Professor
Feigenbaum’s prior involvement as co-principal investigator and Stanford’s multi-
disciplinary support of SUMEX-AIM. Professor Lederberg continues an active role
in the SUMEX-AIM community as chairman of the AIM Executive Committee and on a
more frequent basis through the system message facilities. Professor Stanley
Cohen has continued his role on the Stanford SUMEX Advisory Committee and has
assumed a new role on the national AIM Executive Committee. He provides
biomedical ties and coordination with the Stanford Medical School and projects.

2.1.3.2 Manaqement Committees

Since the SUMEX-AIM project is a multilateral undertaking by its very
nature, we have created several management committees to assist in administering
the various portions of the SUMEX resource. As defined in the SUMEX-AIM
management plan adopted at the time the initial resource grant was awarded, the
available facility capacity is allocated 40% to Stanford Medical School projects,
40% to national projects, and 20% to common system development and related
functions. Within the Stanford aliquot, Prof. Feigenbaum and BRP have
established an advisory committee to assist in selecting and allocating resources
among projects appropriate to the SUMEX mission. The current membership of this
committee is listed in Appendix III.

For the national community, two committees serve complementary funhtions.
An Executive Committee oversees the operations of the resource as related to
national users and makes the final decisions on authorizing admission for new
projects and revalidating continued access for existing projects. It also
establishes policies for resource allocation and approves plans for resource

E. A. Feigenbaum 36

Section 2.1.3.2 Resource Management

development and augmentation within the national portion of SUMEX (e.g., hardware
upgrades, significant new development projects, etc.). The Executive Committee
oversees the planning and implementation of the AIM Workshop series currently
implemented under Prof. S. Amarel of Rutgers University and assures coordination
with other AIM activities as well. The committee will play a key role in
assessing the possible need for additional future AIM community computing
resources and in deciding the optimal placement and management of such
facilities. The current membership of the Executive committee is listed in
Appendix III.

Reporting to the Executive Committee, an Advisory Group represents the
interests of medical and computer science research relevant to AIM goals. The
Advisory Group serves several functions in advising the Executive Committee; 1)
recruiting appropriate medical/computer science projects, 2) reviewing and
recommending priorities for allocation of resource capacity to specific projects
based on scientific quality and medical relevance, and 3) recommending policies
and development goals for the resource. The current Advisory Group membership is
given in Appendix III.

These committees have actively functioned in support of the resource.
Except for the meetings held during the AIM workshops, the committees have “met”
by messages, net-mail, and telephone conference owing to the size of the groups
and to save the time and expense of personal travel to meet face to face. The
telephone meetings, in conjunction with terminal access to related text
materials, have served quite well in accomplishing the agenda business and
facilitate greatly the arrangement of meetings. Other solicitations of advice
requiring review of sizable written proposals are done by mail.

We will continue to work with the management committees to recruit the
additional high quality projects which can be accommodated and to evolve resource
allocation policies which appropriately reflect assigned priorities and project
needs. We will continue to make information available about the various projects
both inside and outside of the community and thereby promote the kinds of
exchanges exemplified earlier and made possible by network facilities.

2.1.3.3 New Project Recruitinq

The SUNEX-AIM resource has been announced through a variety of media as
well as by correspondence, contacts of NIH-BRP with a variety of prospective
grantees who use computers, and contacts by our own staff and committee members.
The number of formal projects that have been admitted to SUNEX has more than
trebled since the start of the project to a current total of 9 national AIM
projects and 8 Stanford projects. Others are working tentatively as pilot
projects or are under review.

We have prepared a variety of materials for the new user ranging from
general information such as is contained in a SUNEX-AIM overview brochure to more
detailed information and guidelines for determining whether a user project is
appropriate for the SUNEX-AIM resource. Dr. E. Levinthal has prepared a
questionnaire to assist users seriously considering applying for access to SUNEX-

37 E. A. Feigenbaum

Resource Management Section 2.1.3.3

AIM. Pilot project categories have been established both within the Stanford and
national aliquots of the facility capacity to assist and encourage new projects
in formulating possible AIM proposals and pending their application for funding
support. Pilot projects are approved for access for limited periods of time
after preliminary review by the Stanford or AIM Advisory Group as appropriate to
the origin of the project.

These contacts have sometimes done much more than provide support for
already formulated programs. For example, Prof. Feigenbaum’s group at Stanford
previously initiated a major collaborative effort with Dr. Osborn’s group at the
Institutes of Medical Sciences in San Francisco. This project in “Pulmonary
Function Monitoring and Ventilator Management - PUFF/VN’* (see Section 4.1.7 on
page 98) originated as a pilot request to use NLAB in a small way for modeling.
Subsequently the AI potentialities of this domain were recognized by Feigenbaum,
Nii, and Osborn and a joint proposal was submitted to and funded by NIH. This
past summer John Kunz from Dr. Osborn’s laboratory spent approximately half t ime
at Stanford to learn more about AI research and to participate more closely in
the development of the PUFF/VN program.

Similarly, Prof. Feigenbaum and Ms. Nii recently spent two days with Profs.
Kintsch and Polson at the University of Colorado, introducing them to the newly
developed AGE package for use in formulating their program on modeling aspects of
human cognition.

The following lists the fully authorized projects currently comprising the
SUMEX-AIM community (see Section 4 for more detailed descriptions). The nucleus
of five projects that were authorized at the initial funding of the resource in
December 1973 are marked by **<i>” and the new projects admitted this past year by
“<n>“.

National Community -

11 Acquisition of Cognitive Procedures (ACT); Dr. J. Anderson (Carnegie-
Mellon University)

2) Chemical Synthesis Project (SECS); Dr. T. Wipke (University of California
at Santa Cruz)

<n> 3) Hierarchical Models of Human Cognition; Ors. W. Kintsch and P. PO 1 son
(University of Colorado)

<i> 4) Higher Mental Functions Project; K. Colby, M.D. (University of California
at Los Angeles)

5) INTERNIST Project; J. Myers, M.D. and Dr. H. Pople (University of
Pittsburgh1

6) Medical Information Systems Laboratory (NISL); M. Goldberg, M.D. and Dr.
8. McCormick (University of Illinois at Chicago Circle)

7) Pulmonary Function Project (PUFF/VM); J. Osborn, M.D. (Institutes of
Medical Sciences, San Francisco) and Dr. E. Feigenbaum (Stanford
University1

E. A. Feigenbaum 38

Section 2.1.3.3 Resource Management

<i> 8) Rutgers Computers in Biomedicine; Dr. S. Amarel (Rutgers University)

9) Simulation of Comprehension Processes; Drs. J. Greeno and A. Lesgold
(University of Pittsburgh)

Stanford Community -

1) AI Handbook Project; Dr. E. Feigenbaum

<i> 2) DENDRAL Project; Drs. C. Djerassi and E. Feigenbaum

3) Generalization of AI Tools (AGE); Dr. E. Feigenbaum

4) Large Multi-processor Arrays (HYDROID); Dr. G. Wiederhold

5) Molecular Genetics Project (NOLGEN); Dr. E. Feigenbaum and L. Kedes, M.D.

<i> 6) .MYCIN Project; E. H. Shortliffe, M.D. and Dr. 8. Buchanan

<i> 7) Protein Structure Modeling; Drs. E. Feigenbaum and R. Engelmore

<n> 8) RX Project; R. Blum, M.D.

As an additional aid to new projects or collaborators with existing
projects, we provide a limited amount of funds for use to support terminals and
communications needs of users without access to such equipment. We are currently
providing support for 6 terminals and 4 modems for users as well as a leased line
between Stanford and the University of California at Santa Cruz for the Chemical
Synthesis project.

2.1.3.4 Stanford Community Buildinq

The Stanford community has undertaken several internal efforts to encourage
interactions and sharing between the projects centered here. Professor
Feigenbaum organized a project with the goal of assembling a handbook of AI
concepts, techniques, and current state-of-the-art. This project has had
enthusiastic support from the students and substantial progress made in preparing
many sections of the handbook (see Section 4.2.1 on page 130 for more
details).

Weekly informal lunch meetings (SIGLUNCH) are also held between community
members to discuss general AI topics, concerns and progress of individual
projects, or system problems as appropriate. In addition, presentations from a
substantial number of outside speakers are invited.

39 E. A. Feigenbaum

Resource Management Section 2.1.3.5

2.1.3.5 Existins Project Reviews

We have conducted a continuing careful review of on-going SUMEX-AIM
projects to maintain a high scientific quality and relevance to our medical AI
goals and to maximize the resources available for newly developing applications
projects. At the 1 ast AIM workshop, meetings of the AIM Advisory Group and
Executive Committee were held to review the national AIM projects. These groups
recommended continued access for ail formal projects then on the system. They
also recommended phasing out the Organ Culture pilot project.

In the fall of 1978, meetings of the Stanford Advisory Group were held to
review projects supported out of the Stanford aliquot. The recommendation of
this group was to phase out support for the Hydroid Project, pending work more
directly applicable to SUMEX-AIM goals. The group also recommended phasing out
the Quantum Chemistry and Genetics Applications pilot projects unless stronger AI
relevance were established immediately. The Quantum Chemistry project is
attempting to develop ties to the DENDRAL stereochemistry effort. Since Prof.
Loew will move to Rockefeller University this summer, her access to SUMEX would
come under. the jurisdiction of the AIM Executive Committee and we will ask them
to review her application for continued support. The Genetics Application
project has acquired their own machine for statistical calculations on genetic
demographic data and has stopped using SUMEX.

2.1.3.6 AIM WorkshoP SuPPort

The Rutgers Computers in Biomedicine resource (under Dr. Saul Amarel) has
organized a series of workshops devoted to a range of topics related to
artificial intelligence research, medical needs, and resource sharing policies
within NIH. Meetings have been held for the past several summers at Rutgers.

In May 1979, a mini-AIM workshop devoted to clinical diagnosis programs was
organized by MIT-Tufts and Rutgers and held in Vermont. This meeting was small
(about 25 attendees) and emphasized detailed technical discussions about system
designs and the strengths and weaknesses of various approaches. Many of the
attendees were graduate students in order to maximize the benefit of personal
contacts and discussions for on-going research projects. Topics covered in the
discussions included state-of-the-art in explanation, causality in reasoning,
strategies of focusing and dealing with multiple diagnostic problems, issues of
representation and grain of description, creating and updating a knowledge base.
planning strategies, issues of time representation, and inexact reasoning.

The SUMEX facility has served as a communications base for workshop
planning and provided support for workshop demonstrations when requested. We
expect to continue this support for future workshops. The AIM workshops provide
much useful information about the strengths and weaknesses of the performance
programs both in terms of criticisms from other AI projects and in terms of the
needs of practicing medical people. We plan to continue to use this experience
to guide the community building aspects of SUMEX-AIM.

E. A. Feigenbaum 40

Section 2.1.3.7 Resource Management

2.1.3.7 Resource Allocation Policies

As the SUMEX facility has become increasingly loaded, a number of diverse
and conflicting demands have arisen which require controlled allocation of
critical facility resources (file space and central processor time). We have
already spelled out a policy for file space management; an allocation of file
storage is defined for each authorized project in conjunction with the management
committees. This allocation is divided among project members in any way desired
by the individual principal investigators. System allocation enforcement is
implemented by project each week. As the weekly file dump is done, if the
aggregate space in use by a project is over its allocation, files are archived
from user directories over allocation until the project is within its allocation.

We have implemented effective system scheduling controls (see page 16) to
attempt to maintain the 40:40:20 balance in terms of CPU utilization and to avoid
system and user inefficiencies during overload conditions. The initial
complement of user projects justifying the SUMEX resource was centered to a large
extent at Stanford. Over the past five years of the SUMEX grant, a substantial
growth in the number of national projects was realized. During the same time the
Stanford group of projects has matured as well and in practice the 40:40 split
between Stanford and non-Stanford projects is not ideally realized (see Figure 11
on page 49 and the tables of recent project usage on page 52). Our job
scheduling controls bias the allocation of CPU time based on percent time
consumed relative to the time allocated over the 40:40:20 community split. The
controls are “soft” however in that they do not waste computer cycles if users
below their allocated percentages are not on the system to consume the cycles.
The operating disparity in CPU use to date reflects a substantial difference in
demand between the Stanford community and the developing national projects,
rather than inequity of access. For example, the Stanford utilization is spread
over a large part of the 24-hour cycle, while national-AIM users tend to be more
sensitive to local prime-time constraints. (The 3-hour time zone phase shift
across the continent is of substantial help in load balancing.) During peak
times under the new overload controls, the Stanford community still experiences
mutual contentions and delays while the AIM group has relatively open access to
the system. For the present, we propose to continue our policy of “soft”
allocation enforcement for the fair split of resource capacity.

Our system also categorizes users in terms of access privileges. These
comprise fully authorized users, pilot projects, guests, and network visitors in
descending order of system capabilities. We want to encourage bona fide medical
and health research people to experiment with the various programs available with
a minimum of red tape while not allowing unauthenticated users to bypass the
advisory group screening procedures by coming on as guests. So far we have had
relatively little abuse compared to what other network sites have experienced,
perhaps on account of the persona1 attention that senior staff gives to the logon
records, and to other security measures. However, the experience of most other
computer managers behooves us to be cautious about being as wide open as might be
preferred for informal service to pilot efforts and demonstrations. We will
continue developing this mechanism in conjunction with management committee
policy decisions.

We have also encouraged mature projects to apply for their own machine
resources in order to preserve the SUMEX-AIM resource for research and

41 E. A. Feigenbaum

Resource Management Section 2.1.3.7

development efforts and to support projects unable to justify their own machines.
The DENDRAL project is currently applying for a VAX machine to support their
planned development and program export work. This machine would be integrated
with the SUMEX resource through the planned local network and would be dedicated
to biomolecular structure elucidation problems. At the same time it would give
SUMEX resource staff experience with the VAX architecture in anticipation of
projected developments within the ARPANET AI community to move toward that
machine for INTERLISP support. Other projects may make similar proposals in the
near future.

E. A. Feigenbaum 42

Section 2.1.4 Future Plans

2.1.4 Plans Future

Our plans for the next grant year are a continuation of the work in
progress as discussed earlier. Specific goals are outlined below. Objectives
for the individual collaborating projects are discussed in their respective
reports (see Section 4 beginning on page 64).

1) RESOURCE OPERATIONS

We will continue to make available to the SUMEX-AIM communities an
effective, state-of-the-art facility to support the development of medical AI
programs and to facilitate collaborations betueen community members. Goals
include:

a) Continue development of the existing KI-TENEX facility to maximize
effectiveness for community use. We expect to continue improving system
reliability and efficiency, subsystem software, documentation and user help
facilities, and communications facilities.

b) Finish procurement of a satellite machine (DEC 20201 and integrate it into
the existing SUMEX-AIM facility. This will include developing necessary
hardware and software interfaces (Ethernet) and evolving management
policies and tools with the AIM Executive Committee to allocate this
resource most effectively to meet community needs. This system will also
give us experience with the many issues of distributing computing resources
among collaborating projects that we expect to face in future years.

c) Recruit new applications and projects to broaden the range of high quality
medical AI applications. Several potential user projects are currently
pending review and we will explore others that might be suggested by
advisory group members or other contacts. We will continue to review
existing projects in relation to SUMEX AI goals and capacity and to
encourage the development of independent resources to support mature
projects.

d) We plan to work closely with other AIM resource nodes, such as the one at
Rutgers, to ensure effective community support between the facilities and
to take further advantage of expertise in various user groups for system
and user software development.

e) We will submit an application for a follow-on renewal term to the current
3-year grant which terminates in July 1981. This application will focus on
continued development of artificial intelligence tools and applications
central to the needs of medical science and the development of effective
computing resources within the SUMEX-AIM community to enable progress
towards those goals.

2) TRAINING AND EDUCATION

Within our resources, we will continue to assist new and established user
projects will

issemination of
projects in gaining access to SUMEX-AIM facilities. Co1 laborating
provide their own manpower and expertise for the development and d
their AI programs. Goals include:

43 E . A. Feigenbaum

Future PI ans Section 2.1.4

a) Continue to provide a high standard of system documentation and limited
staff assistance for user problems.

bl Allocate funds approved for “collaborative linkages” in cooperation with
the AIM Executive Committee to assist collaborating projects to meet their
needs for communication and access to the SUMEX-AIM resource.

c) Provide continued support for the AIM workshop activities in the form of
demonstration support, participation in workshop discussions, and
assistance for potential pilot users in understanding the SUMEX-AIM
community.

3) u RESEARCH

Next year, no further work is planned on the MAINSAIL project for which
highly successful initial design and demonstration phases were completed this
past year.

Our core research work will emphasize continued development of tools of
general interest to the SUMEX-AIM community, AI information resources, and basic
efforts to understand and build knowledge-based “intell igent agent” programs.
This work will complement on-going collaborator project developments by providing
links to make more general results available to the entire community. We will
continue to provide partial funding for selected individuals in the Stanford
Heuristic Programming Project for these core research goals with special
relevance to SUMEX medical AI applications. This support is an appropriate
share, complementing funding from other sources such as ARPA and NSF.

Attention will be focused on a number of areas of research:

a) AI Handbook - complete publication of Volume I and concentrate on the
research, draft, and external review process for Volume II.

b) AGE - improve the user interface to the AGE “tool kit” including tutorial
and design assistance subsystems. We will also extend the range of tools
available including such mechanisms as backward-chained inference,
heuristic search, portions of the MOLGEN “units” package, and semantic
networks.

c) Representation - design appropriate symbolic structures for modeling
knowledge about a problem. Presently this phase is carried out entirely by
system builders. Goals are to codify the knowledge used to make such
decisions, both as an aid to the system builders and ultimately to enable
programs themselves to choose appropriate representations.

d1 Reasoning - model the appropriate inference mechanisms for a problem and
build systems that incorporate those models.

e) Knowledge acquisition - design of systems that acquire knowledge by
communication with human experts.

E. A. Feigenbaum 44

Section 2.1.4 Future Plans

f1 Multiple uses of knowledge - design of systems that use the symbolic
representation of the domain knowledge for additional purposes such as
consensus building (accommodating conflicting advice from experts whose
competence may be equal but whose “styles” vary), tutoring of human
students by employing the knowledge base (both the information it contains
and the way it is organized>, and explanation (constructing a chain of
rules which satisfactorily rationalize the system’s behavior to an
observer.

4s E. A. Feigenbaum

Future Plans Section 2.2

2.2 Summary of Resource Usaoe

The following data give an overview of SUMEX-ATM resource usage. There are
four subsections containing data respectively for 1) overall system loading, 21
resource use by community, 3) resource use by project, and 4) network use.

2.2.1 Overall System Loadinq

The following plots display several different aspects of system loading
over the life of the project. These include total CPU time delivered per month,
the peak number of jobs logged in, and the peak load average. The mon thl y “peak”
value of a given variable is the average of the daily peak values for that
variable during the month. Thus. these -“peak” values are representative of
averase monthly loading maxima and do not reflect the largest excursions seen on
individual days.

These data show well the continued growth of SUMEX use and the self-
limiting saturation effect of system load average, especially after installation
of our overload controls early in 1978. Since late 1976, when the dual processor
capacity became fully used, the peak daily load average has remained between
about 5.5 and 6. This is a measure of the user capacity of our current hardware
configuration and the mix of AI programs.

700-1

600-

soo-

400-

300-

200- 3uai Processor
InscaUed

of,,,,,,,,,, / I / (III, I
OJt=iJOJf?IOJAJOJf?JOIA

197s 1976 1977 1978 1979

Figure 8. Total CPU Time Consumed by Month

E. A. Feigenbaum 46

Section 2.2.1 Overall System Loading

50 PeaK Jobs Logged In

3~a.L Processor
Installed

0’4 , 3 (1 I n ’ ’ I ’ I ’ I

OJfWOf~JOJAJOJ~JO;f l
1975 1976 1977 1978 1979

Figure 9. Peak Number of Jobs by Month

8 PcaK Load Fiverage

I 256K ?leaory Added
Disks Upgraded

Dual Processor
installed

197s I.976 1977 1978 1979

Figure 10. Peak Load Average by Month

47 E. A. Feigenbaum

Relative System Loading by Community Section 2.2.2

2.2.2 Relative System Loadinq by Community

The SUMEX resource is divided, for administrative purposes, into 3 major
communities: user projects based at the Stanford Medical School, user projects
based outside of Stanford (national AIM projects), and common system development
efforts. As defined in the resource management plan approved by BRP at the start
of the project, the available system CPU capacity and file space resources are
divided between these communities as follows:

Stanford
AIM
Staff

40%
40%
20%

The “available” resources to be divided up in this way are those remaining after
various monitor and community-wide functions are accounted for. These include
such things as job set-Tdu’ing, overhead, network service, file space for
subsystems, documentation, etc.

The monthly usage of CPU and file space resources for each of these three
communities relative to their respective aliquots is shown in the plots in Figure
11 and Figure 12. Terminal connect time is shown in Figure 13. It is clear that
the Stanford projects have held an edge in system usage despite our efforts at
resource allocation and the substantial voluntary efforts by the Stanford
community to utilize non-prime hours. This reflects the maturity of the Stanford
group of projects relative to those getting started on the national side and has
correspondingly accounted for much of the progress in AI program development to
date.

E. A. Feigenbaum 48

Section 2.2.2 Relative System Loading by Community

40’ Nat lona 1 #IIt7
v
: 30-

3

z
zo-

u
x lo-

0 I , , , , I 1 I I 1 1 , , , , ‘
OJAJUJAJUJRJO-JAJOJT

197s 1976 1977 1978 1979

0’1, I f,, ‘I,, ‘, , , , I) I
OJFiJOJRJ.OJAJOJRJOJR

197s 1976 1977 ‘ 1978 1979

0’1 f t ,,I ,‘F,,f ,,,,,f *

OJCiJOJAJOJRJOJRJOJR
197s 1976 1977 1978 1979

Figure 11. Monthl' Y CPU Usage by Community

49 E. A. Feigenbaum

Relative System Loading by Community Section 2.2.2

404 Nat ronal

lo-
Disks Upgraded

0 I 1 I I I I ‘I 1 I, , 1 , , , I
OJRJUJRJOJAJOJRJOJA

197s 1976 I.977 1978 1979

Disks Upgraded

O“jIII II111 III 1 IT II I

OJRJOJRJOJRJOJAJOJR
197s 1976 1977 1978 1979

Disks Upg'raded

197s 1976 1977 1978 1979

Figure 12. Monthly File Space Usage b:, Community

E. A. Feigenbaum SO

